Alpha-Nebula:Short-term stock price prediction based on echo state networks

原文链接:Short-term stock price prediction based on echo state networks

展示课件链接:Short-Term Stock Price Prediction based on Echo State Network

这篇文章讲的是将Echo State Network(回声状态网络)应用于股票数据的短期预测中。我之前没有听说过ESN,而这篇文章在ESN之外的创新也不多,所以算是介绍这样一个工具吧。

Echo State Network

ESN是什么呢?这里直接应用一篇个人认为写的很好的教学文章,不过这里我也准备用简单的语言讲一讲个人的理解。

ESN拥有一个叫做reservoir的状态储存池,我们将其记为x(i)向量,对于这个x(i)向量进行某种迭代

(1)   \begin{equation*}  x(i+1) = f(W*x(i)) \end{equation*}

其中f是任意非线性函数。现在我们x(i)充当了一种Memory的角色。

接着令u(i)表示第i时刻的输入,y(i)表示第i时刻的目标输出,我们将这个输入输出加到刚才的 (1)里面,得到实际的迭代式

(2)   \begin{equation*}  x(t+1) &= f(W^{in}u(t+1) + W x(t) + W^{back} y(t)) \end{equation*}

是不是感觉这里面x(t)就像回声一样在里面荡来荡去,这里就对了。

最后输出为

(3)   \begin{equation*}  y'(t+1) = W^{out} concat(u(n+1),x(n+1),y(n)) \end{equation*}

在式子(3)里面,y'(t+1),concat(u(n+1),x(n+1),y(n))以及y(t+1)已知,则可以用线性回归训练啦。

可以看出该算法有如下特点:

  • 训练是最小二乘法,速度快
  • 不会陷入局部最优解

另外也有一些需要注意的地方:

  • W不能太大,否则可能越乘越大,可以通过W的特征值的最大值的大小来限制
  • 为了使效果更优,W最好是稀疏矩阵(比如95%的零)

使用ESN预测短期股价

先说一些论文中的细节

  • 论文中非线性函数f(x)的选择为

    (4)   \begin{equation*}  f(x)  = \frac{1}{1+e^{-\alpha x + v}} \end{equation*}

  • 通过赫斯特指数选择训练输入数据,文章里面选择了Hurst指数最接近1的序列进行训练,原因不明…… 也许是因为hurst接近1的时候,序列特征更持久?
    相关文献:Some comments on Hurst exponent and the long memory processes on capital markets
  • 通过各种技术指标可以有效的提高效果,但是可能存在过拟合,所以通过PCA来进行数据降维。

想法与疑问

  • 一般的论文都通过平均百分比误差来表示效果,感觉这东西还是不太容易量化实际的收益……
  • 这里的LinearRegression是最简单的版本,我们是否可以给他加入更多的优化,比如局部回归,或者对于不同的部分采用不同的回归,甚至可以把决策树套进来。

 

原创文章地址:【Alpha-Nebula:Short-term stock price prediction based on echo state networks】,转载时请注明出处mhy12345.xyz

发表评论

电子邮件地址不会被公开。 必填项已用*标注

This site uses Akismet to reduce spam. Learn how your comment data is processed.