浅析trapframe与context的原理与区别

TRAPFRAME与CONTEXT的区别

在ucore操作系统中,trapframecontext是很容易混淆的两个结构,他们都会出现在线程的调度中。实际上,结构体trapframe用于切换优先级、页表目录等,而context则是用于轻量级的上下文切换。从技术上来看,两者的区别在于context仅仅能够切换普通寄存器,而trapframe可以切换包括普通寄存器、段寄存器以及少量的控制寄存器。

*在看后续内容之前,你需要提前了解汇编语言、栈、C函数调用的实现。

TRAPFRAME结构体

trapframe定义如下——

这个结构体中,依次储存了——

  • 目标寄存器
  • gs, fs, es, ds 段寄存器
  • trap_no, err 用于储存中断信息
  • eip, cs, eflags 用于储存陷阱(trap)返回后的目的地址
  • esp, ss 在权限发生变化时,用于指示新的栈的位置

有两个地方使用了trapframe,一个是中断调用,另一个是进程切换。两者对于trapframe的使用有相似之处,但也并不完全相同。

中断调用中使用TRAPFRAME

trapframe在中断中,在前期负责中断信息的储存,后期负责中断的恢复。同时,trapframe结构体是位于栈中的,其生成和使用都是通过栈的pushpop命令实现的,这将在后面详细解释。

中断发生时,下面代码,将一系列信息压到栈中。这些信息在后续的,trap(struct trapframe *tf)函数中,被对齐到了tf结构体中。

中断处理完成后,需要恢复原来的运行状态,此时,按顺序将之前push的所有信息pop出来即可。

当然,倘若读者认为trapframe仅仅像这样中规中矩的实现信息的保存,那就太小看他了。我们发现,在调用call trap之后,有一句popl %esp,而后续恢复的信息完全是基于该%esp进行定位的,那么在中断处理内存中,如果我们强行修改%esp成为我们希望接下来运行的代码段的trap描述,那么经过__trapret代码恢复trapframe后,你就可以让程序跳转到任何你希望的地方。

比如下面代码就实现了内核态到用户态的切换。

其中*((uint32_t *)tf - 1)这个位置的值就是之后popl %esp恢复的%esp的值。

进程切换中CONTEXT的作用

context的结构体定义如下,可以看到,其中储存了所有的用户寄存器的值。

context结构体干的事情也很简单,可以用switch_to函数囊括,即保存一系列寄存器,并恢复一系列寄存器。在C++中,switch_to是拥有两个context结构体为参数的函数switch_to(&(prev->context), &(next->context)); ,其实现如下——

进程切换中TRAPFRAME的作用

那是不是进程的切换就可以直接用switch_to函数呢?答案是否定的,因为switch_to仅仅保存、恢复了普通寄存器,无法实现优先级跳转、段寄存器修改等等。这时,就要借助trapframe了。

由于switch_to函数跳转后,将调到context.eip位置。而这个跳转我们没法完全实现进程切换,所以我们可以将其设置为一个触发二级跳转的函数,forkret

其中,forkret定义如下(current是当前进程,也就是进程切换的目标进程),forkret不同于switch_to,它尝试使用trapframe作为进程切换的手段,而相比于contexttrapframe的功能就强大多了。

而forkrets定义如下——

现在,又回到了中断恢复的那一段代码,而其中的逻辑也完全相同。最终,进程跳转目标进程的入口,而该入口的地址,被存放在proc->tf中。下面是kernel_threadtrapframe初始化代码,也能佐证最终调用函数入口fn被储存在了eip中。

浅析文本摘要算法(Document Summarization)

概述

文本摘要算法,指的是在一篇文章中,摘要出核心观点的算法。主流的文本摘要算法生成一篇文章的摘要,摘要长度在3~4句话左右。

历史

在深度学习算法出现之前,人们使用了贪心算法、图算法来研究文本摘要。同时,为了衡量一段生成的摘要是否和标准摘要(gold summary)相似,学术界提出了一系列标准,这些标准现在广泛用于文本摘要算法的模型评价,其中最为常用的就是ROUGE – A Package for Automatic Evaluation of Summarieszz中提到的ROUGE-x系列算法。

深度学习提出后,LSTM/GRU作为摘要生成的强有力工具,一举打破传统算法的效果。最为主流的摘要生成模型是基于抽取式和生成式的,这两种模型将在后面详述。

随着深度学习的发展,很多其他算法也被引入。如一些文章使用强化学习,直接尝试训练一个能够获得最高ROUGE得分的模型。一些文章借助机器视觉方向的研究,优化模型结构。也有文章训练模型,判断句子相对于文章的重要性,进而间接实现摘要提取。

抽取式和生成式文本摘要

既然是摘要,那么显然,摘要中很大一部分都应该是原文中出现过的词语。同时,基于语法的考虑,也需要引入一些没有在原文中出现的词。

这时,就引出了文本摘要算法的两大学派—— 抽取式(extractive)和生成式(abstractive)。

  • extractive算法希望直接从文本中,抽出若干词语,连成一句话。词汇的抽取通常使用循环神经网络,配合注意力机制。得到“下一个词”可能是谁的概率分布。
  • abstractive算法希望从词汇表中,直接选出“下一个词”。

不论是abstractive的文本摘要,还是extractive的文本摘要,模型都由两个部分构成的,即一个编码器(encoder)和一个解码器(decoder)。

  • 对于编码器来说,通常都是将输入文本导入一个循环神经网络,生成出一个上下文特征向量c
  • 对于解码器来说,通常也是使用一个循环神经网络。以编码器生成的表征原文的上下文特征向量c,和之前生成的词汇{y_1, y_2, \dots, y_t},生成出摘要的下一个词y_t

数据集

当前研究人员多使用CNN/DailyMail作为数据集,在该数据集中,每一组数据是一个新闻稿,平均每篇文章39句话。同时还有一个“多句”的摘要。

著名论文

Get To The Point: Summarization with Pointer-Generator Networks

这篇文章提出了一个Pointer-Generator模型,既可以通过Pointer拷贝原文的文字,也可以通过Generator生成不存在原文中的文本。这两个模型通过一个开关p_{gen}进行选择——

P(w) = p_{gen} P_{vocab}(w) + (1-p_{gen})\sum_{i:w_i=w} a_i^t

其中P_{vocab}表示从词汇表中选择一个单词的概率分布,而a_i则是从原文选择第i个词汇的概率分布。

在此基础上,本文还提出了一种称之为覆盖率机制(coverage mechanism)的方式,用以解决抽取式摘要中最容易出现的内容重复的问题。

SummaRuNNer: A Recurrent Neural Network based Sequence Model for Extractive Summarization of Documents

这篇文章核心目标是仅仅是在“句子级别”进行摘要,即从原文中选择若干适合作为摘要的句子。该文章使用两层GRU,依次在“词语”级别和“句子”级别总结信息,最终获得一个可以表征全局性质的向量d。接着,再参考句子级别的特征向量s_i、全局特征向量d、以及RNN的隐状态h_i,生成对于句子的评分。

Ranking Sentences for Extractive Summarization with Reinforcement Learning

这篇文章的核心目标是给一篇文章的句子按照与主题的相关度进行排序,文章指出,在之前的方法中,通常是训练模型,使得对于每一个句子的估价尽量靠近一个指定的ground-true。但提升对于ground-true的近似并不一定能够提高模型的ROUGE评分。因此,文章提出使用强化学习的方式,直接学习句子的label,进一步最大化ROUGE评分(注意,这里ROUGE评价指标是不可导的,因此才需要用到强化学习)。

Neural Document Summarization by Jointly Learning to Score and Select Sentences

这篇文章仍然是句子级别摘要的算法,其思想借鉴了MMR算法,在MMR算法中,借助一个建立在语句集合中的评分函数r(S),迭代选择能够最大化加入后r(S')值的句子。即

g(S_i) = r(S_{t-1} \cap {S_i}) - r(S_{t-1})

g(S_i)可以看做在选择了S_{t-1}后,第i篇文章S_i的评分。使用神经网络结构去学习g(S_i)即可实现——能够参考之前选取句子集合信息的语句选择算法。

BanditSum: Extractive Summarization as a Contextual Bandit

这篇文章也是借助强化学习尝试拟合文本的ROUGE得分,并且提出了新的结构用于防止摘要倾向于前面的句子。

Bottom-Up Abstractive Summarization

这篇文章与Pointer-Generator相似,不过为了解决前文中文本拷贝倾向于拷贝整句话的bug。在输入给Pointer-Generator模型之前,先给输入的文本加了一个mask,过滤掉其中一部分,这样就导致文本不再倾向于拷贝连续的内容。

DeepChannel: Salience Estimation by Contrastive Learning for Extractive Document Summarization

这篇文章训练模型,拟合P(D|S),即给定摘要S,能够恢复原文D的概率。而函数P(D|S)的训练,可以借助文章D,摘要S,一句不重要的话S_2这三部分进行训练。生成P(D|S)后,再使用贪心算法构造摘要集合。

Recurrent Attention Network on Memory for Aspect Sentiment Analysis 阅读笔记

原文链接:Recurrent Attention Network on Memory for Aspect Sentiment Analysis

Abstract

文章提出了一个基于神经网络的,提取“关键词的情感倾向”的模型,拥有如下特点:

  • 创造了一种称之为“加权记忆(weighted-memory)”的机制
  • 使用GRU实现注意力(attention)

Introduction

提出问题

“I bought a mobile phone, its camera is wonderful but the battery life is short”

这一部分,以一个句子的情感分析为例进行分析。在分析中,我们需要对于每一个关键词(target),分析其情感语义,比如camera对应wonderful。选取最近情感词是通常手段,但是显然这种手段会在某些精心构造的句子中失效,比如下面这句话蕴含了中性情感而非消极情感。

“Its camera is not wonderful enough.”

针对上述问题,TD-LSTM是一个解决方案,这种解决方案也有一个缺点,就是特征的传递是逐词的,这在长句子中,当目标(target)与特征词(feature word)相距很远时,又会出现问题。进一步,注意力机制被引入,已表征特征重要性。然而,当实际的注意力点较多时,这种机制的表现也不太好。

“Except Patrick, all other actors don’t play well”

上述的问题便是这片文章准备解决的东西。

引入模型

模型层次结构依次为——

  • 一个双向LSTM生成一系列“记忆片(memory slice)”
  • 所有的内存片按照距离目标词(target)的相对距离加权,使得句子里不同的目标词拥有不同的特征向量
  • 在生成的加权记忆片中,使用注意力机制合并,这里使用的是循环层GRU

在本文中,就如何组合不同的注意力这个问题,提出了新的解决方案。从某一个方面来看,比较像一个普通人的认知——最初看到句子的最开头,然后在继续阅读的过程中不停“注意到”知识,并在最后将注意力集中的几个语言拼接。

对于Introduction中的最后一句话,我们通常会先看到“Except”,接着被“don’t play well”吸引,最终对于“Patrick”生成一种积极的情感。在本文之前,多数文章提出的结构都无法解决多注意力的问题。而我们提出结构中的GRU曾可以很好的解决。

Related Work

对于特定实体的感情分类问题,有很多传统做法基于规则、统计概率,这些做法不是有繁琐的模型构造,就是需要依赖很多额外的语法信息。

这时神经网络就可以发挥作用了~神经网络本身曾被用在语法分析,句子整体情感分析,诸如有名的递归神经网络(Recursive NN)。然而,递归神经网络在语法分析低效的非标准文本(比如推特评论等短文本)中效果不好。

对于指定目标的情感分析,曾经有人提到过TD_LSTM算法,这个算法将需要的目标词放在中间,从两边分别使用LSTM传递信息。这种做法在长句子中效果会大幅减弱,因为很远的情感词必须经过非常多层才能到达终点。

最后,神经图灵机在2014年被提出,其中定义的注意力机制被证明在很多地方适用。其创新之处是引入了外部储存,大大提高了神经网络的能力!从某种方面来说,本文就是在这个模型基础上修改而成的。

Our Model

右图是文章提出模型的结构。

在输入层,所有输入的文本都通过经典的wordtovec算法,将每个词压缩为一个d维向量。

接下来,使用了双向LSTM神经网络(BLSTM)提取每一个词的“记忆信息” u_t,实际上,这种实现方式就是普通的bi-directional-lstm。

接下来,对于不同的位置,有一个二次加权,成为“加权记忆”(weighted memory),加权的意义不太清楚,可能使得较远的信息更容易传播吧。具体来说,文中的加权含义将以中心词的两端t_{max}距离的词,按照距离中心的距离线性加权拼接在一起。

最后,文章使用GRU层将加权记忆再“捣鼓”一番,这里的“捣鼓”是指循环N词,每次通过上一次“捣鼓”的记忆e_{t-1},以及整个“加权记忆”得到第t个“注意力”的加权矩阵,进而通过GRU的形式更新e_t,关于选择GRU模型的原因,文章解释说因为GRU的参数较少。

Experiments

表现优于传统模型

Conclusions and Future Work

在这一部分,作者谈到了选择固定个注意力(Attention)显得有些冗余,在未来的工作中会考虑自适应注意力个数能够得到更好的结果。

点评

在Introduction模块,文章点出了在NLP领域,各种算法面临的共同问题,这种归纳确实很有意思。关于这类模型共同的要点罗列如下——

  • 如何将单词编码,至少本文还是用的经典算法
  • 如何解决远距离传输问题,本文使用weighted-memory机制
  • 如何在不增加太多参数的条件下,增加模型的“深度”,对应了本文中多注意力机制
  • 如何尽量在模型的选择上减少训练参数,对应本文的GRU选取

这篇文章中Related Work里面提到的神经图灵机感觉会很有意思,之后可以找一找相关的论文阅读一下,虽然在NLP方面感觉有些束手束脚,但是在其他领域可能会有很大的作为。

对于本文提到的模型,却是可以看出是仿照人类对于句子阅读的认知,每一个步骤都可以通过人类阅读的认知来解释,不过这种仿照是否能够带来很好的效果就不太好说了。至少文章写的是效果很好,那就姑且相信吧。

由于读的比较粗,关于每一层输出的具体维数还是有点晕,可能也有作者没有表述清楚的锅。

A Hierarchical Neural Autoencoder for Paragraphs and Documents

论文链接:A Hierarchical Neural Autoencoder for Paragraphs and Documents

这篇文章的核心目标是:输入一个文段,通过神经网络,将该文段压缩为一个低维特征向量,尽可能的记住尽量多的东西,再通过神经网络,将低维特征向量映射回原文段。整个模型就是一个自编码器(Autoencoder)。

其中,模型输入的文段是一个包含若干句话的文段,其中每句话又包含若干单词,单词可以用词向量算法转化为向量表示。模型运用了LSTM模型以及Autoencoder模型的思想,在这里就不赘述了。

paper提出的模型有三个,都是从LSTM出发改良而成的,分别是:基础LSTM,带有层次信息的LSTM,带有层次信息和注意力机制的LSTM。这三种模型的流程图如下:

第一个模型就是将一个LSTM的模型的尾部接到第二个LSTM模型的头部完成的。显然,由于LSTM本身对于信息的承载量优先,而一篇文章通常由上千个单词组成,完全无法指望LSTM能够提取出太多有用的信息。

第二个模型,增添了层次结构,其设计初衷就是为了解决第一个模型的不足之处:单词本身携带的信息太少了,要让模型从一篇文章中定位到一个关键词太过复杂。解决方式是在“文段”和“单词”之间增添一个过渡桥梁,即“句子”。通过一个LSTM从句子中提取出一个特征向量,对于每个句子提出的特征向量,我们再通过另一层LSTM提取出文段的特征向量。

第三个模型就比较玄学了。可以感性理解其优于第二个模型的地方。即,由于LSTM每次只提取最后一个Cell的输出,等同于默认了最后一个Cell的输入,即最后一个词是最重要的,这与实际不符。因此对于压缩器LSTM的所有节点,同时增加一个判别器D,可以通过该节点本身的输出与最终编码器总结出来的特征向量,求出一个类似于相关程度的量v。实际上解码器所获得的输入,应该是每个Cell的v值通过类softmax的函数进行加权求和得到的。用这样的特征向量替代之前的特征向量,等于说将重要的东西变得更重要了。

总之,这篇文章里面的内容其实挺基础的,LSTM本身是15年发明出来的东西,在现在已经有3年的时间了,很多特性已经被挖掘出来,Autoencoder思想则更早。也就是说时效性可能已经过了。

不过算法本身非常的general,可以套用到NLP中的很多地方,我们需要做的还有实现词向量算法。

无锁数据结构设计 之 详解C++内存顺序(Memory Order)


内存顺序概述

内存顺序,这是一个很大很大很大的坑,在介绍atomic原子类型的时候,就已经提及过,但是由于本身概念理解起来非常困难,所以没有细讲。现在就让我们仔细看看这是什么一个神奇的东西吧。

先通过一系列简单的代码片段,看一看内存顺序是如何定义的:

可见,memory_order一般情况下是加在有内存操作的函数(如store、load等)后面,比如上面程序中的 std::memory_order_release ,特别的由于函数compare_exchange_weak在失败、成功之后存在两种不同的内存操作策略,因此它可以传入两个memory_order分别指示成功(success)和失败(failure)后不同的操作策略:

 

内存顺序原理

好了,废话不多说,为了让读者理解内存顺序,我们将分别解释内存顺序、操作可见性等概念

内存顺序,顾名思义,是由于内存操作重排带来的不确定性。

CPU中的缓存机制曾经大幅提高了内存访问速度,这个机制将内存中经常访问的区域拷贝到了缓存中以加快速度。这种策略使得内存的读写的目标不一定是内存中的值,而是有可能仅仅是该值在缓存中的一个副本。

在单核处理器下,并不会出现任何问题,毕竟所有线程的缓存是共用的,也就是说不存在缓存同步的问题。在多核的情况下,问题就会比较复杂了,每一个核都有自己独立的L1缓存,若两个核共享内存,就需要解决缓存同步的问题。内存重排就是处理器(编译器)设计者为了平衡缓存同步的时间开销,和程序不稳定性之后得到的一个较好的解决方式。

不仅仅缓存会导致内存操作的重排,编译器也可能为了优化速度重排操作,当然,这些重排也是建立在不影响单线程程序正确性的情况下。不过,编译器的优化非常好处理,在解决好处理器优化后,编译器优化自然而然可以解决,因此我们这里就不深入讨论。

【注:在 之前的文章 中,我曾介绍过内存顺序可以用多人写作的版本控制来理解,单独线程的本地修改对于自身来说是一定有序的,但是这些修改要传递到远程的代码库中,则是一个可能发生顺序交换的不确定事件。  】

以上面的程序为例子:函数 write_x_then_y 依次写了变量x和y,而函数 read_y_then_x 在确认变量y已经被写之后读入x。从常理上来说,此时 z++ 是一定会被执行的。但是从运行结果上来看,assert可能被触发!

假设编译器没有优化汇编层面x和y的写入次序。实际上,是由于缓存机制,导致不同变量在其他线程看来更新的顺序是不同的。这就是内存顺序所刻画的问题。其中,本程序中,x的赋值操作可能不会被其他线程所看到,这就是所谓的不可见

从可见性方面重新叙述内存顺序的问题——一个线程的内存操作对于其他线程来说是不可见的。一种可能的情况是:

  • 线程A:写x,写y
  • 线程B:发现x先于y被赋值
  • 线程C:发现y先于x被赋值

联想之前说的缓存机制,确实会是这样的。

所以内存顺序memory_order是什么呢,memory_order是编译器指定常规的非原子内存访问如何围绕原子操作排序。

初步理解内存顺序

下面是我对于内存顺序的理解,由于在x8-64的机器上,内存顺序的问题本身不容易触发,所以下面的所有解释都没有经过验证,但是是我通过阅读网络上各种“不靠谱”的文献之后,经过自己筛选总结出的一套可信的解释。

memory_order_acquire & memory_order_release

在各种资料中,这两个内存顺序标记都是组合使用的,一个比较直观的理解是:线程A的release标记写操作W_A和线程B的acquire标记读操作R_B组合,可以达到:

  1. 线程A中的所有W_A之前的写操作,相对于W_A对齐,也就是说W_A操作完成后,线程A所有写操作完成
  2. 线程B中的所有R_B之后的读操作,相对于R_B对齐,也就是说R_A操作开始时,线程B的所有读操作尚未开始
  3. 线程A的W_A在线程B的R_B之前读入

综合上面三条性质,我们发现,acquire-release操作成功将线程A和线程B分割开来。

memory_order_relaxed

不进行内存顺序限制,即对于某一条语句,倘若运用了memory_order_relaxed标记,则其储存顺序对于其他线程不可见。那么什么时候使用这个标记呢?

既然acquire-release通过标记线程A的最后一个写操作,和线程B的第一个读操作,实现了线程的顺序要求,那么除了这两个操作之外的其他操作,实际上是可以直接用memory_order_relaxed的

无锁数据结构设计 之 通过atomic实现自旋锁

这是mhy12345的无锁数据结构教程的第二篇,通过atomic<bool>实现自旋锁。对,你没有听错,用无锁数据结构实现一个锁 >_<

自旋锁,顾名思义,通过自旋来实现线程加锁的工具。一个最简单的demo如下

看起来这是一个很机智的做法。程序进入时将一个共享bool变量赋值为true,而在另一个程序准备进入时,检查到该bool变量已经为true了,就放弃进入,开始用while语句自旋。

自旋锁流程
自旋锁流程

不过对于一个多线程程序,其他线程可以在任意位置接入,比如这个程序的第4行和第5行不是一个原子操作,倘若这个时候恰好另一个线程获得了控制权,读取到flag值为false,继续执行,但是在释放flag之前控制权有转会了第一个线程,由于第一个线程已经执行了取值操作,也默认flag为false,继续执行,导致受保护数据被重复访问。产生问题。

这时候,一个非常自然的想法就是:我们能不能把对flag的操作换成原子数据类型操作呢?答案是肯定的!

当程序执行到第六行时,准备进入临界区 //TODO ,首先判断flag是否为false,如果不是,说明已经有一个程序在临界区中间了。否则将flag赋值为true,自己进入临界区。

一点细节是,如果进入临界区失败,则true值会被赋予expected,这是我们需要在while语句中恢复expected的值。

memory_order是什么呢?请看:无锁数据结构设计 之 详解C++内存顺序(Memory Order)

 

参考资料:

https://blog.poxiao.me/p/spinlock-implementation-in-cpp11/

http://blog.csdn.net/yockie/article/details/8838661

 

无锁数据结构设计 之 原子数据类型Atomic介绍

  • 这是mhy12345的无锁数据结构教程的第一篇,原子数据类型介绍。在阅读这篇文章之前,先安利一本这方面叙述非常详细的书《C++并发编程实战》(C++ Concurrency IN ACTION)
  • 想要详细了解无锁编程可移步无锁编程教程,里面从原理上介绍了atomic类型。

原子操作,即不可分割的操作,这样的操作在观察者看来,要不然就做完了,要不然就没有做完。原子操作本身是数据库中的一个概念,举一个例子,“在数据库中删除name为mhy12345的数据项,并且添加一个myh54321的数据项”对应了一个用户改名操作。这种操作如果从中间断开,只完成了一半,会产生灾难性后果。

为了使得我们数据结构能在多线程环境下安全运行,并且尽量不使用锁mutex(时间开销太大),原子数据类型就成了最佳选择方案。C++11提供了一系列原子数据类型,包含在头文件<atomic>里面,我们首先介绍原子数据类型的模板 std::atomic<T> a ,这是一个泛类型模板,支持极少数原子操作——

对于上述的原子操作函数,我们可以理解为函数的调用不会由于进程调度而被切断。例如其中的 compare_excahnge_strong(x,y) 函数,在单线程情况下,等同于一个if语句——

在多线程情况下,该if语句是可以被进程调度切断,这在某些情况下是我们不希望发生的,而这时,我们可以将这个语句用 compare_excahnge_strong 实现。

每一种操作还有一个内存顺序参数memory_order可以选择,这方面内容将在无锁数据结构设计 之 详解C++内存顺序(Memory Order)中介绍。不过,现在,我们可以直接忽略参数中所有memory_order相关项。

接下来,我们将详细介绍这几个函数——

前三个函数并不需要太详细的讲解,因为赋值、读取操作本身在我们的理解中就已经不可分割了,实际上,在当今大多数处理器上,即使一个普通的int的读写也都是原子的。

exchange(x)在我学习期间基本没有看到过使用,不过含义也非常简单:将desired储存,返回是原来的值。本质就是一个数据交换的方式。

定义很多,只用看第一条定义就好了,将变量的值与expected比较,如果相等就用desired更新,返回true,否则返回false,将变量的值放在expected里面。其等价的伪代码在前文已经写过了。

也许读者会问:这个函数看起来非常奇怪,真的在实际工程中会用吗?其实,这两个函数才是atomic的精粹所在!

无论是互斥锁实现,还是无锁栈,无锁队列的实现,都需要用到这些函数。具体细节可以移步 无锁数据结构设计 之 通过atomic实现自旋锁

看了这些文章,可能又有了新的疑惑,我怎么没看出来 compare_exchange_strong 和 compare_exchange_weak 有什么区别?

其实答案很简单, compare_exchange_weak 可以理解为 compare_exchange_strong 的一个有bug,但是更加高效的实现——

在一些特殊情况下,即使expected和变量的值是相同的,也有可能返回false,不过这样一个bug对于最常见的情况:将函数放在一个while循环中并不会产生影响,下面是一个典型的 compare_exchange_weak 放在while循环中的例子。在该例子中,如果少数情况条件判断将本应返回true的情况判断成了false,也并不会导致什么问题(只是多执行一遍while循环罢了)

所以说如果我们并没有意图通过函数返回值判断是否expected与变量的值确实不同,或者对于错误有容许度,我们完全可以用weak替换strong。

 

参考资料:

Cplusplus reference:http://en.cppreference.com/w/cpp/atomic/atomic

C++11原子操作atomic的内存顺序(memory_order)的理解

关于无锁数据类型的详细叙述,可以在无锁数据结构里面看,而内存顺序,则在无锁编程教程:简介 里面有讲。

在学习C++11的原子数据类型中,不免会遇到这样的语句——

其中第一个参数很容易理解,但第二个参数就比较奇怪了。实际上,内存乱序是由于编译器和处理器为了提升单线程程序运行效率所引入的,而第二个参数就是尝试去告诉编译器和处理器,哪些地方千万不要自以为是的乱序。

从cplusplus.com上面可以看到更加详细的定义:

可以发现,基本所有涉及到加“锁”,放“锁”的地方,都会存在这样一个memory_order参数!

要理解到这个参数的意思,还得从C++编译器的优化说起。对于一个顺序执行的语句

看起来确实是按顺序执行,先修改a的值,再修改b的值。

但是我们可以发现第3行和第4行在cpu中的顺序可以完全交换,因为a,b内存地址是独立的,交换执行顺序并不会导致任何的错误。甚至,在大部分情况下,这两个语句的执行顺序交换或重叠可以使得程序跑的更快!

在摩尔定律几近失效的今天,当然不能放过任何的优化空间,处理器在执行代码时会按照自己的理解将这类独立的语句按照另一种顺序执行。对于单线程程序,完全没有问题。但是到了多线程里面,这样的交换顺序就不对了。

这是一个通过bool实现自旋锁的代码——

不过这个程序第3行和第4行不是一个原子操作,也就是说其他线程可能在这个时候切入,导致数据访问错误。

而倘若将读取、判断、赋值合并为了一个操作。这样自旋锁就work了!这里用到了C++11的atomic<bool>类型

一个小小的问题,之前谈到了编译器会按照自己的想法交换一些代码的位置,也就是说其他线程的TODO2的代码和TODO0的代码块都有可能在编译器的优化下越过我们的加锁位置跳到TODO1里面(只要没有严格先后次序的语句都是可以随便交换顺序的)。在多线程里面,这是一个致命的问题,这个优化导致了之前的努力全部泡汤了!

怎么办呢,别忘了我们还有memory_order参数——

  • memory_order_acquire:执行该操作时,加入一个内存屏障,需要等待其他线程完成所有内存读
  • memory_order_release:执行该操作时,加入一个内存屏障,需要等待本线程完成所有内存写

有了这两个操作,TODO1中的读写语句就严格和外部的语句隔离开了,潜在的风险也就没有了。

当然,memory_order不只这些,还包括

  • memory_order_relaxed:完全不添加任何屏障
  • memory_order_consume:同acquire,但是该屏障并不阻塞无关的读操作,只阻塞有依赖关系的读写(不知道如何做到的,比较神奇)
  • memory_order_acq_rel:清空自己所在cpu的读写依赖
  • memory_order_seq_cst:最严格的屏障,要求所有cpu的读写严格依赖

这些都是我自己从网上的博客中总结的,如果有什么不对的地方还请留言告诉我。

不过看起来挺靠谱的~v~

参考链接1:https://blog.poxiao.me/p/spinlock-implementation-in-cpp11/

参考链接2:http://blog.csdn.net/yockie/article/details/8838661

参考链接3:http://www.cplusplus.com/reference/atomic/memory_order/